103 research outputs found

    Zoology: Worming into the Origin of Bilaterians

    Get PDF
    Xenacoelomorphs, a group of worms with simple body organization, have been proposed to represent the first offshoot of bilaterians. A new study shows that they might instead belong to the deuterostomes, just as echinoderms and vertebrates

    Single-cell transcriptomics refuels the exploration of spiralian biology

    Get PDF
    Spiralians represent the least studied superclade of bilaterian animals, despite exhibiting the widest diversity of organisms. Although spiralians include iconic organisms, such as octopus, earthworms and clams, a lot remains to be discovered regarding their phylogeny and biology. Here, we review recent attempts to apply single-cell transcriptomics, a new pioneering technology enabling the classification of cell types and the characterisation of their gene expression profiles, to several spiralian taxa. We discuss the methodological challenges and requirements for applying this approach to marine organisms and explore the insights that can be brought by such studies, both from a biomedical and evolutionary perspective. For instance, we show that single-cell sequencing might help solve the riddle of the homology of larval forms across spiralians, but also to better characterise and compare the processes of regeneration across taxa. We highlight the capacity of single-cell to investigate the origin of evolutionary novelties, as the mollusc shell or the cephalopod visual system, but also to interrogate the conservation of the molecular fingerprint of cell types at long evolutionary distances. We hope that single-cell sequencing will open a new window in understanding the biology of spiralians, and help renew the interest for these overlooked but captivating organisms

    High Level of Structural Polymorphism Driven by Mobile Elements in the Hox Genomic Region of the Chaetognath Spadella cephaloptera

    Get PDF
    Little is known about the relationships between genome polymorphism, mobile element dynamics, and population size among animal populations. The chaetognath species Spadella cephaloptera offers a unique perspective to examine this issue because they display a high level of genetic polymorphism at the population level. Here, we have investigated in detail the extent of nucleotide and structural polymorphism in a region harboring Hox1 and several coding genes and presumptive functional elements. Sequencing of several bacterial artificial chromosome inserts representative of this nuclear region uncovered a high level of structural heterogeneity, which is mainly caused by the polymorphic insertion of a diversity of genetic mobile elements. By anchoring this variation through individual genotyping, we demonstrated that sequence diversity could be attributed to the allelic pool of a single population, which was confirmed by detection of extensive recombination within the genomic region studied. The high average level of nucleotide heterozygosity provides clues of selection in both coding and noncoding domains. This pattern stresses how selective processes remarkably cope with intense sequence turnover due to substitutions, mobile element insertions, and recombination to preserve the integrity of functional landscape. These findings suggest that genome polymorphism could provide pivotal information for future functional annotation of genomes

    Extreme Mitogenomic Variation in Natural Populations of Chaetognaths

    Get PDF
    The extent of within-species genetic variation across the diversity of animal life is an underexplored problem in ecology and evolution. Although neutral genetic variation should scale positively with population size, mitochondrial diversity levels are believed to show little variation across animal species. Here, we report an unprecedented case of extreme mitochondrial diversity within natural populations of two morphospecies of chaetognaths (arrow worms). We determine that this diversity is composed of deep sympatric mitochondrial lineages, which are in some cases as divergent as human and platypus. Additionally, based on 54 complete mitogenomes, we observed mitochondrial gene order differences between several of these lineages. We examined nuclear divergence patterns (18S, 28S, and an intron) to determine the possible origin of these lineages, but did not find congruent patterns between mitochondrial and nuclear markers. We also show that extreme mitochondrial divergence in chaetognaths is not driven by positive selection. Hence, we propose that the extreme levels of mitochondrial variation could be the result of either a complex scenario of reproductive isolation, or a combination of large population size and accelerated mitochondrial mutation rate. These findings emphasize the importance of characterizing genome-wide levels of nuclear variation in these species and promote chaetognaths as a remarkable model to study mitochondrial evolution

    New bobtail squid (Sepiolidae: Sepiolinae) from the Ryukyu islands revealed by molecular and morphological analysis

    Get PDF
    Bobtail squid are emerging models for host-microbe interactions, behavior, and development, yet their species diversity and distribution remain poorly characterized. Here, we combine mitochondrial and transcriptome sequences with morphological analysis to describe three species of bobtail squid (Sepiolidae: Sepiolinae) from the Ryukyu archipelago, and compare them with related taxa. One Ryukyuan type was previously unknown, and is described here as Euprymna brenneri sp. nov. Another Ryukyuan type is morphologically indistinguishable from Sepiola parva Sasaki, 1913. Molecular analyses, however, place this taxon within the genus Euprymna Steenstrup, 1887, and additional morphological investigation led to formal rediagnosis of Euprymna and reassignment of this species as Euprymna parva comb. nov. While no adults from the third Ryukyuan type were found, sequences from hatchlings suggest a close relationship with E. pardalota Reid, 2011, known from Australia and East Timor. The broadly sampled transcriptomes reported here provide a foundation for future phylogenetic and comparative studies

    New genes from old: asymmetric divergence of gene duplicates and the evolution of development

    Get PDF
    Gene duplications and gene losses have been frequent events in the evolution of animal genomes, with the balance between these two dynamic processes contributing to major differences in gene number between species. After gene duplication, it is common for both daughter genes to accumulate sequence change at approximately equal rates. In some cases, however, the accumulation of sequence change is highly uneven with one copy radically diverging from its paralogue. Such ‘asymmetric evolution’ seems commoner after tandem gene duplication than after whole-genome duplication, and can generate substantially novel genes. We describe examples of asymmetric evolution in duplicated homeobox genes of moths, molluscs and mammals, in each case generating new homeobox genes that were recruited to novel developmental roles. The prevalence of asymmetric divergence of gene duplicates has been underappreciated, in part, because the origin of highly divergent genes can be difficult to resolve using standard phylogenetic methods. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.</jats:p

    Lifecycle, culture, and maintenance of the emerging cephalopod models Euprymna berryi and Euprymna morsei

    Get PDF
    Cephalopod research remains limited by the inability to culture species under laboratory conditions for multiple generations to provide continuous access to animals at all stages of the life cycle. Here, we describe a multi-generational laboratory culture system for two emerging cephalopod models: the hummingbird or Berry’s bobtail squid, Euprymna berryi Sasaki, 1929, and Morse’s bobtail squid, Euprymna morsei Verrill, 1881, which are primarily found off mainland Japan. E. berryi wild adults were spawned and raised to the third filial generation, and E. morsei wild adults were spawned and raised to the second filial generation in a closed system at 20°C. We report growth and survivorship data for a cohort of 30 individuals across the first generation raised in captivity. E. berryi and E. morsei grew exponentially during the first 90 and 60 days post-hatching, respectively. Survivorship at the first spawning event for E. berryi and E. morsei was 90% and 77%. E. berryi and E. morsei females spawned after days 112 and 71 days post-hatching, respectively. We describe the life history of each species and how to distinguish sexes. We discuss the challenges of cephalopod culture and how culturing these species address those problems.journal articl

    ChĂŠtognath transcriptome reveals ancestral and unique features among bilaterians

    Get PDF
    The chĂŠtognath transcriptome reveals unusual genomic features in the evolution of this protostome and suggests that it could be used as a model organism for bilaterians

    Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals

    Get PDF
    Hox and ParaHox genes encode transcription factors with similar expression patterns in divergent animals. The Pdx (Xlox) homeobox gene, for example, is expressed in a sharp spatial domain in the endodermal cell layer of the gut in chordates, echinoderms, annelids and molluscs. The significance of comparable gene expression patterns is unclear because it is not known if downstream transcriptional targets are also conserved. Here, we report evidence indicating that a classic transcriptional target of Pdx1 in vertebrates, the insulin gene, is a likely direct target of Pdx in Pacific oyster adults. We show that one insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue. Transcriptomic comparison suggests that this tissue plays a similar role to the vertebrate pancreas. Using ATAC-seq and ChIP, we identify an upstream regulatory element of the cgILP gene which shows binding interaction with cgPdx protein in oyster hepatopancreas and demonstrate, using a cell culture assay, that the oyster Pdx can act as a transcriptional activator through this site, possibly in synergy with NeuroD. These data argue that a classic homeodomain-target gene interaction dates back to the origin of Bilateria. In vertebrates insulin is a direct transcriptional target of Pdx: the same is true in Pacific oysters and the authors show insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue, showing this gene interaction dates back to the origin of Bilateria

    Phylogenomics illuminates the evolution of bobtail and bottletail squid (order Sepiolida)

    Get PDF
    Bobtail and bottletail squid are small cephalopods with striking anti-predatory defensive mechanisms, bioluminescence, and complex morphology; that inhabit nektobenthic and pelagic environments around the world’s oceans. Yet, the evolution and diversification of these animals remain unclear. Here, we used shallow genome sequencing of thirty-two bobtail and bottletail squids to estimate their evolutionary relationships and divergence time. Our phylogenetic analyses show that each of Sepiadariidae, Sepiolidae, and the three subfamilies of the Sepiolidae are monophyletic. We found that the ancestor of the Sepiolinae very likely possessed a bilobed light organ with bacteriogenic luminescence. Sepiolinae forms a sister group to Rossinae and Heteroteuthinae, and split into Indo-Pacific and Atlantic-Mediterranean lineages. The origin of these lineages coincides with the end of the Tethys Sea and the separation of these regions during the Eocene and the beginning of the Oligocene. We demonstrated that sepiolids radiated after the Late Cretaceous and that major biogeographic events might have shaped their distribution and speciation
    • 

    corecore